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INTRODUCTION

It is a well-known result in magnetospheric physics that the phase-

space density f (averaged over gyration, bounce, and drift) evolves ac-

cording to the equation

-- xT~y) Ox xT(y) Dxx - +

in the presence of (a) pitch-angle diffusion at fixed particle energy E and

shell parameter L and (b) a distributed source S (MacDonald and Walt,

1961; Haerendel, 1968; Roberts, 1969; Walt, 1970; Lyons et al., 1972;

Schulz and Lanzerotti, 1974). The diffusion coordinate x is the cosine

of the equatorial pitch angle a0 in this formulation, and the factor T(y) is

well approximated (Davidson, 1976) by the formula

T(y) T(0) - [T(0) - T(1)]Y 3 4 , (2)

where T(O) 11.3801730, T(1) = (OT/6)(2) / 2 R 0.7404805, and ysin 0

2 1/2(1 - x )I . Eigenfunction solutions of (1) have been obtained by MacDonald

and Walt (1961) and by Roberts (1969) for particular functional forms of the

bounce-averaged diffusion coefficient D under the approximation that T(y)

commutes with 8/ax. The difficulty with such an approximation is that it is

credible only for x << 1, whereas one often requires solutions that are valid

over the entire interval Osx 2 S 1.
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The purpose of the present work is to introduce a new diffusion co-

ordinate called z , in terms of which (1) can be solved without further

approximation over the entire range of x for selected forms of DzZ

xT(y)] 2Dxx. The new coordinate is defined by the equation

X I
z Zly) f x'T(y')dx' = y' T(y') dy'

0 y

(1 - y 2 )T(O) - -±[T(o) - T(l)] (1 - y 1 l/ 4 ) (3)

and can be shown (Schulz, 1974) to assume the end-point values Z(O)

- 16/35 and Z(l) = 0 exactly. The approximation for Z(O) extracted

from (3) agrees with 16/35 to within 0. 1% (Schulz, 1976). It follows from

(1) and (3) that

ar a rD
at = DZa (4)

with D defined as above. This last form of the diffusion equation is

canonical in the sense that there is no intervening Jacobian factor that

fails to commute with 8/8z. Thus, if D is a suitably simple function

of z, then one can specify the eigenfunctions g z) of the diffusion operator

in closed form by requiring gn (Zc) to vanish for some positive z c < 16/35.

The resulting eigenfunctions will be applicable to the entire physical range

(05 -z-5z < 16/35) of the new canonical diffusion coordinate z.

c
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If Dzz is not precisely of such a form that yields gn(z) in terms

of previously studied analytical functions, it may nevertheless happen hi

that D closely resembles in form a diffusion coefficient D) for which

the eigenfunctions in(z) are known exactly. In this case one may be able

to use the gn(z) as a basis for generating the gn(z) by means of pertur-

bation theory. These and other applications of the coordinate z are examined

below.

EXACT EIGENFUNCTIONS

The functional form of D is neither well known nor easily (cf. Lyons,
zz

et al. , 1972) derived. However, the construction of pitch-angle eigenfunctions

gn(z) for (4) can be illustrated quantitatively if one arbitrarily assumes that

D = (z/z ) 'D *' where o- < 2 and D * is the value of D at some z = zzz c zz zz zz c
<16/35 where T is required to vanish. There is a precedent for this type of

exercise in the work of Roberts (1969), who sought solutions of (1) for D XX

(x/x)9D * under the assumption that T(y) would commute with a/ax . The

present form of D agrees with the Roberts (1969) form of D for x2 << I

if one takes g = 2(r - 2, but both forms are equally arbitrary.

There is a broader purpose behind an exercise of this type. By

identifying certain functional forms of D for which the eigenfunctions ofzz
the diffusion operator can be expressed in closed form, one thereby obtains

a complete set of orthogonal functions on the interval 0 -< z -< z c The

.7



eigenfunctions corresponding to a somewhat different form of D zz

can be expanded in terms of this set, and the expansion coefficients can

be determined by means of perturbation theory.

For this purpose, it proves useful (see above) to adopt the notation

z for any special form of D that leads to eigenfunctions which can be

written explicitly in closed form. It is logical then to denote the eigen-

values of the diffusion operator as n and the corresponding eigenfunctionsn

as j n(z) when Dzz has such a special form. Thus, in the present context,
( T - -,

one is considering the special case in which D = (z/z )D wherezz c zz

r <2 andD. is the value of D at z = z.
zz zz c

Following the mathematical methods of Roberts (1969), one seeks

solutions of the eigenvalue equation

(d/dz) [ zz (dgn/dz) ] + Kng = 0 (5)

in the form gn(z) c z w(3z ) for D = (z/ z c) D . Since (5) then

reduces to Bessel's equation for Y= 1- (012), = (1 -)/2, andp 2 =

z TbZ.Y P it follows that the eigenfunctions of (5) are given by
n

= 1/21Wn(z) [(2 0 z) /c [ V ( Kvn ) F

X (z/z C(- 0)Z 3 (Kvn (z/z )l(c/)) (6)

8
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where K (n = 0, I, 2, ... ) is the nth zero of the ordinary Bessel

function of order v = (0-- 1)1(2 -1/ , i.e., where J V(Kn) = 0. The

corresponding eigenvalue is given by

n n C) zz,

and the normalization of (6) has been chosen so that

z $ 1, n= mSc zn(Z) m(Z) dz = 6 nm- (8)

0 0, n m

Sinze z is given by (3) as a function of y=(l - x ) I , it is easy enough

to plot n(z) as a function of the more familiar variable x. However, no

immediate purpose would be served by such a plot, since the form of Dzz

leading to (6) and (7) does not correspond exactly to the functional form of

Dx postulated by Roberts (1969) except in the limit x-0; nor does it
x:?

correspond to the functional form of D used by anyone else. Therefore,xx

illustration of the functional form of jn(z) is deferred for now and isnI
given instead in the accompanying numerical-applications paper by

Schulz and Boucher (1981), wherein the eigenfunctions corresponding j
to D = (x/x )gD are estimated successively for comparison with the

xx c xx

results of Roberts (1969).

The form D zz = (Z/ZC) Dzz considered above is not the only

form of D that yields exact expressions for the eigenfunctions of
zz

(5). Another form of D ZZ that leads to exact eigenfunctions is the form

9
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D z(1 - z ) D 0where0<z < 1 andD 0 denotes the valuezz zz w C ZZ

of D at z = 0. This form of D converts (5) into Legendre's equation

in the variable a = z. Solutions are given in unnormalized form by the

expression

v(Z) 0C Qv(az c) Pv(az) - Pv(azC) QV (az), (9)

where P (Q and Q () are the two kinds of Legendre function of degree v
and order 1 0 (Stegun, 1966). The corresponding eigenvalues X v are

given by

a 2 v(v+ l)D 0. (10)

Acceptable values of v (> 0) are restricted by the condition

R V( a) cos (vTr/2) P(a zC)

- (Z/Tr) sin (viT/Z) Q(Z) 0, (11)

which assures that lir [f5zz V'(z)] = 0 as z -0. The significance of

this latter requirement is that there must be no diffusion current across

the "boundary" at z = 0, since particles cannot be lost by having their

mirror points reach the equator. The eigenfunctions -v(z) and K (z)
P

corresponding to distinct eigenvalues X and-X are orthogonal in the
V P

sense of (8), but calculation of the appropriate normalization constant

for (9) in closed form appears to be intractable.

to
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The case a = 0 is not included in (9)-(11). Eigenfunctions in this
5'

case are given by

- (z) = (2/z ) 1/ cos [ (2n + 1)(rz/2z)], (12)

and the corresponding eigenvalues are given by

X (2n + 1)2 (ir/2z-) 0 (13)
n C zz

for n = 0,1,2,...; this case is also covered by(5)-(8) with a- 0 (v = -1/2),

since one knows (e.g., Antosiewicz, 1966) that i- () = (2/ir 1 /Z X

cos ,. Moreover, one finds D f) 0 by definition for cr = 0.

The distribution of eigenvalues is immediately apparent from (13)

for the case in which f)zz is independent of z. However, the explicit forms

of K in (7) and of v in (10) are available only in the asymptotic (n - c)vn

limit if Dzz varies with z. Asymptotic expansion of J v (Kvn) = 0 in (6) for

large argument yields

Ji (Kyn) - (2/Trkrn)1/Z cos[Kvn - v(Tr/2) (ir/4)] , (14)

which is to say that

K - nTr + [(4 - )/(2- a-)](r/4). (15)

Hf j



The asymptotic expansion of KVn given by (15) yields all the eigenvalues

exactly for a = 0 [see (13)] but is only indicative for other values of a- < Z.

On the other hand, the asymptotic expansion of RV(a Zc) = 0 in (11) for

large v yields

Rv(aZc) -. (Z/Trv sine) I/2cos[v + 1/2)][0 (16)

where O a cos - 1 (az). This means that

V [ (Zn + 1)r/(Tr - 26) ] - (lZ) (17)

for large integers n. If one substitutes (17) in (10) and takes the limit

a-0, the eigenvalues XV approach those given by (13) for the correspond-

ing values of n.

PERTURBATION THEORY

It would be fortuitous if the form of D in a realistic situation
zz

corresponded exactly to an idealized form (D zz) known to yield eigenfunc-

tions in closed form. However, it is not unreasonable to expect that the

physically realistic D might be roughly approximated by some such Dzz.

tz
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In this case one might be able to use the eigenfunctions n(z) that correspond

to Dzz as a basis (i.e. , as a complete set of orthogonal functions) for gen-

erating by means of perturbation theory the eigenfunctions gn(z) that cor-

respond to D Zr

Let the linear transformation between the true eigenfunctions gn(Z)

and the basis functions gn(z) be specified by
n

gn(Z)= (Z) Umn, (18)
m=O

where the expansion coefficients U form a real unitary matrix, i. e. a

matrix such that

EUmp Umn 6 pn (19)

The expansion coefficients U mnare otherwise unknown at this stage. How-

ever, the contention that gn(z) is an eigenfunction corresponding to D must

mean that

(d/dz) [D zz (dgn /dz) ] + Xng n  0 (20)

for some X [compare with (5) ]. By invoking the orthogonality propertyn

specified by (8), one thereby derives from (18) and (20) the condition

E (Api -x 6np)Um = 0 (21)
, Apm n 6pm mn

m=O

13



on the expansion coefficients U , where

A pm g pdd) [Dzzgd~/)] dz

z

c

-f (dip/dz) Dzz (dim/dz) dz. (22)
0

The second (i. e. , the manifestly symmetric) integral expression for A pm

is derived from the first through integration by parts. One makes use

here of the fact that 9-p(zc) = 0 and the requirement (compare above) that

lim [Dzz g- '(z) ] 0 as z-0. This latter requirement means that one mustzzm

select Dzz so that lim (D zz/D ) 0 as z--*0, i.e., so that the R-m(Z) do not

transport particles across the kinematical "boundary" at z = 0.

It follows from (21) that the columns of the unitary matrix U are themn

normalized eigenvectors of the real symmetric matrixApm , and that the X n

are the corresponding eigenvalues. Thus, the problem of identifying the

eigenfunctions and eigenvalues of (20) has been reduced to the problem of di-

agonalizing the matrix A specified by (22). One observes from the firstpm

integral expression for Apm that if Dzz D zzthen Apm = 6p This

follows from (5) and (8). Consequently, if Dzz is a reasonably good approxi-

mation of D then the off-diagonal elements of A will be "small" in thezz, pm

sense required by perturbation theory.

14
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The usual procedure for diagonalizing a matrix such as A is topm

seek (eigenvalue) solutions Xn of the characteristic equation

det(A p- 5pmn) 0 0. (23)

When one seeks to expand the above determinant by minors, it becomes

obvious that factors lying off the main diagonal can affect Xn only to second

or higher order. Thus, if terms of second and higher order are neglected,

one obtains

+f(
X n z Ann n +  (Dzz - Dzz) (dgn/dz)2 dz (24)

for the eigenvalues and

Ukn/U nn Akn/(Ann - Akk) k n (25)

for the components of the corresponding eigenvectors. One can j
normalize (25) in accordance with (19) by setting

U 11 + nn (A kk 12 1-1/2 (6I' Unn ko nI +E[knl(nn - Akk)] -l1n (26)

I

although it is apparent from (26) that Unn A 1 except for corrections of

second or higher order in "small" quantities.

The foregoing results actually represent somewhat of an im-

provement (cf. Morse and Feshbach, 1953) over those obtained by

the usual Rayleigh-Schr6dinger method encountered in quantum me-

15



chanics (e.g., Schiff, 1955). The advantage of the present method

over Rayleigh-Schr6dinger is that the denominator in (Z5) contains

a better approximation to the difference between the true eigenval-

ues. The author has been informed by Cornwall (1977) that the

present perturbation method is known in quantum mechanics as the

Wigner-Brillouin method. Expanding (23) to second order in off-

diagonal elements, one readily obtains

V AknlAnk
kn A - (27)

kn Akk - A n n

as an improvement on the second-order Rayleigh-Schr6dinger result

for non-degenerate states, which the diffusion eigenfunctions clearly

are. Substitution of (Z7) in (21) yields a general equation of the form

Akk nn + n A n

j;en n n nnl

+ Akn + E Akj (Ujn/Unn) % 0 (28)
Pe k,n

for calculating the second-order eigenvectors. SinceAkj and U. are bothknj

"small" quantities for k t j - n, it will be sufficient (for the second-order

accuracy of the off-diagonal elements U kn) to estimate the ratios U jn/Unn in

(28) by means of (25). Similarly, one can neglect the summation that appears

in the square-bracketed coafficient of U kn/Unn in (28) without sacrificing the

desired order of accuracy. Thus, it follows from (28) that

U kn [Ak+ A.A .A ' (zg)
Unn Ann-Akk jk,n Ann- A 1

16



for kon. The diagonal elements U are to be determined from (19).
nnl

A first-order expansion of (26) assures unit normalization to second

order in "small" quantities. However, the use of (29) in (19) might

be preferable, in that this procedure would assure unit normalization

of each perturbed eigenvector to all orders.

WKB APPROXIMATION

An alternative construction of eigenfunctions for the case in

which D varies only weakly with z is familiar from the literature ofzz

quantum mechanics. This is the method of Wentzel (1926), Kramers

(1926), and Brillouin (1926). The WKB approximation is motivated by

transforming (20) into the time-independent Schrbdinger equation

(d 2 gn/d 2 ) + k g n = 0. (30)

This is achieved by introducing the new variable

=f (Dzz/Dz,z,)dz', (31)

0

whereupon one obtains

kz = X (D *)ZD (32)
ni zz zz

Indeed, equations (30)-(32) are valid even for an arbitrary variation

of Dzz with z. However, if Dzz varies only weakly with z, then k must

17



vary only weakly with . In this case one obtains

g(z) t D-1/4 cosf (/ )l/Zdz "

0

zc z 1/2 2 1/2{Cos 1 o 1
f D jj f. (X /D,,) dz' dz

0 "0

(33)

as the WKB solution (e. g. , Merzbacher, 1961). The corresponding

eigenvalues, determined by requiring that in (z) = 0, are given by

z

(2 n + 1+) z (l 2)2D f (Dz*/Dzz)I dzn zzL i z zJ

(34)

The above results for gn(z) and X reduce (as required) to (12) andgn n

(1 3), respectively, in case D is a true constant (altogether indepen-zz

dent of z). They provide a viable alternative to perturbation theory

(based on the above-described case - =0) if D varies weakly with z.
zz

VARIATIONAL PRINCIPLE

A further point deserves consideration, namely that the diago-

nalization of Apm in (21) is equivalent to the implementation of a vari-

ational principle (Cornwall, 1977) based on (22). The variational prin-

ciple asserts that

18
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z

X 0 Min (dg/dz) D zz

0

subject to the constraint that

z

JI[g(z)]2 dz =1, 
(36)

0

the condition that lir [Dzz g'(z)] = 0 as z-*0, and the boundary condition

that g(z =0.

Proof: Since the eigenfunctions g (z) of the true diffusion operator

(d/dz) [Dzz (d/dz)] form a complete set of orthogonal functions, one can

expand any continuous g(z) satisfying (36) so that

g(z) = C Vngnlz), (37)

n=0

where

2 1 - 2 . (38)
n=l

19



The minimization specified by (35) is implemented by varying the (real)

expansion coefficients V n. It follows from (22) , (37), and (38) that

f (dg/dz)2 D dz

0 C

+ v 2  (39)= 0 + (n 0)n"

n=l

Since Xn > X 0 for n ? 1, i.e., since one of the eigenvalues in (Z0) must

be the smallest, the integral that appears in (35) and (39) can be

minimized only by setting V = 0 for n a 1. Thus, the integral in (35)n

and (39) can be minimized only by taking g(z) = g 0 (z), in which case the

integral becomes equal to X0" This is the standard proof (e. g. , Schiff, 1955)

for the validity of a variational principle.

The usual means of implementing (35) is to construct a trial

function g(z~a ) that meets the required constraints and depends on several
m

adjustable parameters a m.The integral that appears in (35) is then

minimized by varying the adjustable parameters. It is not always practical

to obtain eigenfunctions higher than g 0 (z) by variational means. One

theoretically can do so, as in quantum mechanics (e.g., Merzbacher, 1961),

by selecting trial functions that are orthogonal [in the sense of (8)] to the

optimal g 0 (z) obtained in the manner described immediately above. Such a

procedure is often too cumbersome for practical use, especially if the

20



adjustable parameters a appear nonlinearly in the specification of

the trial functions gn (z; a mn). However, a special case of the variational

method is realized if one specifies each gn(z; a mn) as a linear super-

position of orthogonal functions m (z), as in (18). In this case the amn

correspond to the expansion coefficients U in (18), and minimizationm~n

of A. in (35) is equivalent to diagonalization of the matrix A as in (21).

Of course, the matrices A and U in (21) are of infinite dimension.pm mn

This precludes their numerical evaluation in complete form. However,

progressively better variational approximations of the eigenfunctions

gn (z) can be obtained by diagonalizing progressively larger finite sub-

matrices of Apm, i.e., by truncating the summation in (21) atm = N-1

for progressively larger values of N.

21
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STEADY STATE

If the phase-averaged source S in (4) were constant in time, then

the solution f(z, t) would approach a steady-state solution fT'(Z)

in the limit t -- o. Following Roberts (1969), one can obtain this

f (z) by integrating (4) twice with respect to z for 3f/8t = 0.

The result

z c

f-(z) = (D,,) 1  J S(z") dz" dz' (40)
z 0

is obtained upon application of the relevant boundary conditions.

Roberts (1969) has noted that if S is assumed independent of x (i. e.,

independent of z in the present context), then the functional form of f.,

tends to resemble that of the lowest eigenfunction g0 . This tendency can

be made understandable by expanding S in (4) as a linear combination of

the orthogonal eigenfunctions gn One thereby obtains

-- C X n gn(z)f S S(Z) gn (z') dz', (41)

n=O 0

where S(z') Z 0 by definition (i.e., Sis a source). As long as S(z')

in (41) is constant (or at least relatively structureless) over the interval

0 -< z _< zcP it is likely that the moment of S with respect to the

positive-definite eigenfunction go (z') will exceed those with respect to

22
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the oscillatory (not positive-definite) eigenfunctions gn(z') for n -> 1.
-l

This property and the weighting by Xn  in (41) would account for

the tendency, noted by Roberts (1969), for f,(z) to resemble g 0 (z) in

functional form. Of course, it follows from the completeness of the gn(z)

as an orthonormal set of basis functions that T will coincide exactl,

with g. in functional form only if S itself is directly proportional to g 0 (z).

OMNIDIRECTIONAL FLUX

It would be appropriate to relate the formal results obtained above

to physically observable quantities. Consider an off-equatorial point, i. e.,

one at which the local magnetic-field intensity B exceeds the equatorial

value B 0 on a field line identified by the dimensionless label L. It is well

known (e. g. , Schulz and Lanzerotti, 1974) that the unidirectional flux of

particles (per unit energy and solid angle at local pitch angle a ) is equal

to p 2 -, with f evaluated at

1/2Y (B/B) sin a. (42)
00

In order to specify the omnidirectional flux J 4 1r (per unit energy) at this

point in space, one must integrate pZT over the unit sphere in momentum

(p) space. Thus, it follows from (42) that

23
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f Cos 'ec a')
"4r  ---- 4rp f d(cos)

0

2f By/B=z~rpl (B/B 0)[1_ -y'(B/B 0]/ f- d (y')

B, .0 /i2
= -2pIJ [I - y (B/B 0 )] 1 / - (af/az) T(y) d(y') (43)

at B/B 0 z 1. The final line of (43) results from integration by parts

and serves to simplify the required numerical quadrature.

The phase-space density f that appears in (43) can be expanded

as a weighted series of eigenfunctions of the diffusion operator (Roberts,

1969):

T O(z) + E An(E, L;t) gn(z). (44)

n

The omnidirectional flux described by (43) can thus be written in the

form

J41 2 Ir p [(S/x 2 DxG

+ E A n(E, L;t) G n(B/B0)], (45)

n

where

B0 /B

Gn(B/B0 ) = "f [1 - y2(BB 0 1]2 gn(z) T(y) d(y) (46)

Yc
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and

B0/B

z 0. 2 j1/I22G (BIB 0 ) = - (x D IS) [I - y (B/B 0 )] f,(z) T(y) d(y ).CO 0cxx f2 0
Yc

(47)

Another physical quantity of interest is the particle content C (per

unit L and energy) of a magnetic drift shell. To obtain this, one must

integrate (1/v)J over the drift-shell volume, where v is the speed

of the particle. The cross-sectional area of an infinitesimal drift shell

of "width'' dL is 2 La (B 0 /B) dL, where a is the radius of the earth.

Therefore, the volume per unit "width" is given by

dV 2f it
= ZiTLa (B 0 /B) (ds/dO) do

2TrL afsin 0 d(cos 0) = 4r(16/35)L a3
, (48)

where 0 is the magnetic colatitude and s is the coordinate that measures

arc length along the dipolar field line. It follows from the above consider-

ations and from (43) that

iT B /B2/°~0,
C 41 2 La2 (pv) f (ds/d0) f2 fsec a d(y ) dO. (49)

0 Yc

25



The integral over y in (49) contains contributions from all particle

trajectories that mirror at a higher latitude than the point identified by

the local B/B The domain of integration is illustrated in Figure 1.

If the order of integration is reversed, then one obtains

1 +s2 2 f/ mdy )

C = 4 T
2 La p Tf (1/v cos a ) ds d(y 2 (50)

upon recalling that f satisfies Liouville's theorem, i.e., that f depends

on y but not on s . The upper limit s in (50) represents the arc length

from the equator (s = 0) to the mirror point of a particle whose equatorial

-I
pitch angle is sin y.

The integral of (1/v cos a) with respect to s in (50) represents half

the bounce period of the particle, i.e., is equal to (2 La/v) T(y), where

T(y) is the dimensionless function that appears in (1) and (2). Thus, it

follows from (50) that

C = 16 1 L a (p /v) f y T(y)dy

Yc

z

16 2z L2 a3 (p2 c f dz. (51)

0
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This relationship brings out the true physical significance of the new

diffusion coordinate z, namely that z is a dir3ct measure of phase-space

volume at fixed E and L. Such a finding comes as no surprise; if it

were not so, then z would not be a canonical coordinate in the sense of

(4) and some Jacobian factor would intervene there.

FORMAL CONSIDERATIONS

The canonical coordinate z introduced above is a variable

corresponding to the equatorial pitch angle a 0 . More generally, one

may wish to identify canonical coordinates corresponding (respectively)

to kinetic energy E and shell parameter L, so that (in the presence of

energy transport and radial diffusion) the Fokker-Planck equation can

be written in the canonical form

3 /3 3
- dQ a i

i=1 i=l j=1
(52)

where ( d Qi/dt > and Dij are the transport coefficients. This will be

the case if the new coordinates Qi are related by a canonical transformation

(Goldstein, 1950) to the three adiabatic invariants
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M = (p 2 /2m 0 B 0 ) (1 - x2 ) (53)

J = 2 Lap Y(y) (54)

= (2rra 2 /L) (B 0 L3 sgnq (55)

of charged-particle motion in a dipole field, i. e. , if the Jacobian

a(M, J, 0) / a(Q 1 , Q2, Q 3 ) of the transformation from (M, J, 4) to

(QI' Q2P Q 3 ) is a constant (Haerendel, 1968). The particle described

by (53)-(55) has charge q and rest mass m . Its scalar momentum

is p = (y - l) 1 / 2 m 0 c, where y =1 + (E/rnc 2) and c is

the speed of light. The particle described by (53)-(55) executes a

drift shell, bearing the dimensionless label L, on which the equatorial

magnetic field is B0 (proportional to L-3). The particle has an equatorial
pitch angle sin- 1  -1

y -= cos x, and the earth has a radius denoted a.

The function Y(y) in (54) is given (Schulz, 1971; Davidson, 1976) by

Y(y) = ?y (y,)- 2 T(y') dy'

y 3/4

2T(0) + [6T(0) - 8T(l)]y - 8 [T(0) - T(l)]y * (56)

where T(y), the function specified by (2), is equal to (p/4Lay m 0 ) times

the particle's bounce period.

29

I MOR
'iL



The transformation from (M, J, 0) to (E, x, L) has a Jacobian

that is given by

a(M, J, 0)/a(E, x, L) =

2 L2 2 )1/2
- 8ra m 0 c L y ( 2- 1) x T(y) sgn q. (57)

This is therefore not a canonical transformation, since its Jacobian depends

on all three of the new kinematic variables: on E through the factor

Y(2 1/2 on x through the factor x T(y), and on L through the

factor L Making use of this factorization, however, one clearly can

construct a set of new variables

2
= 3f - l]1/' y' dy' = (y' - 1)3/2 (58)

1

x 1

Q2 f x' T(y')dx' = f y' T(y')dy' = Z(y) (59)

0 y
L 

3L3 3f (L') 2 dL' =L 3  (60)

0

_ 3
Thus, the coordinates (y 2  1) (P/m0 c) 3 z Z(y), and L are

canonical in the present sense and are therefore eligible for use in (52),

of which (4) is a special case. (Magnetospheric electric fields related

to convection and corotation are implicitly neglected in the present

work, as are day-night asymmetries in the magnetic field. This

simplifying assumption is important for the validity of the above 1i
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as new variables, since it would be a mistake to adopt new varia-

bles that fail to remain constant around an adiabatic drift sbell.

A

The derivation of (4) from (52) is achieved by letting all of the

transport coefficients except D (- D2 2 ) vanish. In a description

based on the uncanonical variables (E, x, L), this condition would be

expressed by letting all of the transport coefficients except D vanish.xx

In this description, however, one must insert in (5Z) the Jacobian of the

transformation from the canonical action variables (M, J, 0) to the

uncanonical variables (E, x, L) selected for their conceptual convenience

({Haerendel, 1968; Schulz and Lanzerotti, 1974). One thereby obtains

3I

aT +
at Gf a

1E D i j G 8 + (61)

i=l j=l 3

where Q I E, Q2 = x, Q3 = L, and G is the Jacobian given by (57).

One obtains (1) from (61) by letting all of the transport coefficients

except D vanish. This is the derivation described by Haerendel (1968).xx

It is contingent upon the fact that all three of the adiabatic invariants

(M, J, 0) are canonical action variables (e. g., Schulz and Lanzerotti,

1974). Their conjugate phases (angle variables (f are cyclic coordinates

for the unperturbed Hamiltonian of charged-particle motion in the adiabatic

guiding-center approximation.
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An earlier derivation of (1) by MacDonald and Walt (1961) had

been based on arguments of the type advanced in (48)-(51), namely

that xT(y) dx is a direct measure of phase-space volume at fixed E
5

and L. Neither they nor Roberts (1969), however, chose to exploit

the coordinate z as a natural variable for the construction of eigen-

functions. They chose instead to let T(y) commute with a/ax in (1).

SUMMARY

The major point of the present work has been to introduce the new

canonical variable z, as defined by (3), in order to simplify the

description of pitch-angle diffusion in a dipolar magnetic field. Various

applications seem to follow quite naturally. For example, one can

calculate eigenfunctions of the diffusion operator (8/ 8z) [Dzz ( a/az)]

by means of a quantum-mechanical perturbation theory, if not in closed

form. The availability of such eigenfunctions enables one to calculate

properly the temporal evolution of the phase-space density T from an

arbitrary initial configuration toward an asymptotic steady state. It

would surely be possible to identify further applications of the canonical
diffusion coordinate z. Those noted above should suffice to establish

the usefulness of the scheme. Numerical results illustrating implementa-

tion of the methods described above are given in an accompanying paper

(Schulz and Boucher, 1981). Other applications are left (for now, at least)

to the imagination of the reader.
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The Laboratory Operations of The Aerospace Corporation is conducting

experimental and theoretical investigations necessary for the evaluation and

application of scientific advances to new military concepts and systems. Ver-

satility and flexibility have been developed to a high degree by the laboraory

personnel in dealing with the many problems encountered in the nation's rapidly

developing space and missile systems. Expertise in the latest scientific devel-

opments is vital to the accomplishment of tasks related to these problems. The

laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-
fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-

pheric optics, chemical reactions in polluted .. mospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry. propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena. photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon: test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronc components in

nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
lion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.
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